Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a sample of 34 normal Type II supernovae (SNe II) detected with the Zwicky Transient Facility, with multiband UV light curves starting att≤ 4 days after explosion, and X-ray observations. We characterize the early UV-optical color, provide empirical host-extinction corrections, and show that thet> 2 day UV-optical colors and the blackbody evolution of the sample are consistent with shock cooling (SC) regardless of the presence of “flash ionization” features. We present a framework for fitting SC models that can reproduce the parameters of a set of multigroup simulations up to 20% in radius and velocity. Observations of 15 SNe II are well fit by models with breakout radii <1014cm. Eighteen SNe are typically more luminous, with observations att≥ 1 day that are better fit by a model with a large >1014cm breakout radius. However, these fits predict an early rise during the first day that is too slow. We suggest that these large-breakout events are explosions of stars with an inflated envelope or with confined circumstellar material (CSM). Using the X-ray data, we derive constraints on the extended (∼1015cm) CSM density independent of spectral modeling and find that most SN II progenitors lose up to a few years before explosion. We show that the overall observed breakout radius distribution is skewed to higher radii due to a luminosity bias. We argue that the of red supergiants (RSGs) explode as SNe II with breakout radii consistent with the observed distribution of RSGs, with a tail extending to large radii, likely due to the presence of CSM.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available